Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{5\sqrt{3}-\sqrt{2}}{4\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5\sqrt{3}-\sqrt{2}}{4\sqrt{5}}\frac{\sqrt{5}}{\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{15}-\sqrt{10}}{20}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 5 \sqrt{3}- \sqrt{2}\right) } \cdot \sqrt{5} = \color{blue}{ 5 \sqrt{3}} \cdot \sqrt{5}\color{blue}{- \sqrt{2}} \cdot \sqrt{5} = \\ = 5 \sqrt{15}- \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{5} } \cdot \sqrt{5} = 20 $$ |