Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{5}{\sqrt{18}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 5 }{\sqrt{ 18 }} \times \frac{ \color{orangered}{\sqrt{ 18 }} }{ \color{orangered}{\sqrt{ 18 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{18}}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 5 \sqrt{ 9 \cdot 2 }}{ 18 } \xlongequal{ } \\[1 em] & \xlongequal{ } \frac{ 5 \cdot 3 \sqrt{ 2 } }{ 18 } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{15\sqrt{2}}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}} \frac{ 15 \sqrt{ 2 } : \color{blue}{ 3 } }{ 18 : \color{blue}{ 3 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5\sqrt{2}}{6}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 18 }}$. |
② | In denominator we have $ \sqrt{ 18 } \cdot \sqrt{ 18 } = 18 $. |
③ | Simplify $ \sqrt{ 18 } $. |
④ | Divide both the top and bottom numbers by $ \color{blue}{ 3 }$. |