Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{5}{2\sqrt{2}-3\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5}{2\sqrt{2}-3\sqrt{3}}\frac{2\sqrt{2}+3\sqrt{3}}{2\sqrt{2}+3\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{10\sqrt{2}+15\sqrt{3}}{8+6\sqrt{6}-6\sqrt{6}-27} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{10\sqrt{2}+15\sqrt{3}}{-19} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-\frac{10\sqrt{2}+15\sqrt{3}}{19}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 \sqrt{2} + 3 \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 5 } \cdot \left( 2 \sqrt{2} + 3 \sqrt{3}\right) = \color{blue}{5} \cdot 2 \sqrt{2}+\color{blue}{5} \cdot 3 \sqrt{3} = \\ = 10 \sqrt{2} + 15 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 2 \sqrt{2}- 3 \sqrt{3}\right) } \cdot \left( 2 \sqrt{2} + 3 \sqrt{3}\right) = \color{blue}{ 2 \sqrt{2}} \cdot 2 \sqrt{2}+\color{blue}{ 2 \sqrt{2}} \cdot 3 \sqrt{3}\color{blue}{- 3 \sqrt{3}} \cdot 2 \sqrt{2}\color{blue}{- 3 \sqrt{3}} \cdot 3 \sqrt{3} = \\ = 8 + 6 \sqrt{6}- 6 \sqrt{6}-27 $$ |
③ | Simplify numerator and denominator |
④ | Place a negative sign in front of a fraction. |