Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{5}{-8\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5}{-8\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5\sqrt{3}}{-24} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{5\sqrt{3}}{24}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 5 } \cdot \sqrt{3} = 5 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ - 8 \sqrt{3} } \cdot \sqrt{3} = -24 $$ |
③ | Place a negative sign in front of a fraction. |