Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{8}+3\sqrt{6}}{\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{8}+3\sqrt{6}}{\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{14}+3\sqrt{42}}{7}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 4 \sqrt{8} + 3 \sqrt{6}\right) } \cdot \sqrt{7} = \color{blue}{ 4 \sqrt{8}} \cdot \sqrt{7}+\color{blue}{ 3 \sqrt{6}} \cdot \sqrt{7} = \\ = 8 \sqrt{14} + 3 \sqrt{42} $$ Simplify denominator. $$ \color{blue}{ \sqrt{7} } \cdot \sqrt{7} = 7 $$ |