Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{5}}{3+\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{5}}{3+\sqrt{5}}\frac{3-\sqrt{5}}{3-\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{5}-20}{9-3\sqrt{5}+3\sqrt{5}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{12\sqrt{5}-20}{4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3\sqrt{5}-5}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}3\sqrt{5}-5\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3- \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{5} } \cdot \left( 3- \sqrt{5}\right) = \color{blue}{ 4 \sqrt{5}} \cdot3+\color{blue}{ 4 \sqrt{5}} \cdot- \sqrt{5} = \\ = 12 \sqrt{5}-20 $$ Simplify denominator. $$ \color{blue}{ \left( 3 + \sqrt{5}\right) } \cdot \left( 3- \sqrt{5}\right) = \color{blue}{3} \cdot3+\color{blue}{3} \cdot- \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot3+\color{blue}{ \sqrt{5}} \cdot- \sqrt{5} = \\ = 9- 3 \sqrt{5} + 3 \sqrt{5}-5 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 4. |
⑤ | Remove 1 from denominator. |