Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{4}}{2\sqrt{36}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{4}}{2\sqrt{36}}\frac{\sqrt{36}}{\sqrt{36}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{48}{72} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 48 : \color{orangered}{ 24 } }{ 72 : \color{orangered}{ 24 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{36}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{4} } \cdot \sqrt{36} = 48 $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{36} } \cdot \sqrt{36} = 72 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 24 } $. |