Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{35}}{4\sqrt{56}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{35}}{4\sqrt{56}}\frac{\sqrt{56}}{\sqrt{56}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{56\sqrt{10}}{224} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{10}}{4}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{56}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{35} } \cdot \sqrt{56} = 56 \sqrt{10} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{56} } \cdot \sqrt{56} = 224 $$ |
③ | Divide both numerator and denominator by 56. |