Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{3}}{\sqrt{75}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{3}}{\sqrt{75}}\frac{\sqrt{75}}{\sqrt{75}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{60}{75} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 60 : \color{orangered}{ 15 } }{ 75 : \color{orangered}{ 15 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{75}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{3} } \cdot \sqrt{75} = 60 $$ Simplify denominator. $$ \color{blue}{ \sqrt{75} } \cdot \sqrt{75} = 75 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 15 } $. |