Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{2}}{8\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{2}}{8\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8}{16} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 8 : \color{orangered}{ 8 } }{ 16 : \color{orangered}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{2} = 8 $$ Simplify denominator. $$ \color{blue}{ 8 \sqrt{2} } \cdot \sqrt{2} = 16 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 8 } $. |