Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4\sqrt{2}}{3\sqrt{14}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4\sqrt{2}}{3\sqrt{14}}\frac{\sqrt{14}}{\sqrt{14}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8\sqrt{7}}{42} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 8 \sqrt{ 7 } : \color{blue}{ 2 } } { 42 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{7}}{21}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{14}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{14} = 8 \sqrt{7} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{14} } \cdot \sqrt{14} = 42 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |