Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4+\sqrt{7}+4-\sqrt{7}}{4-\sqrt{7}+4+\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}} \frac{ 8 : \color{orangered}{ 8 } }{ 8 : \color{orangered}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}1\end{aligned} $$ | |
① | Simplify numerator and denominator |
② | Divide both the top and bottom numbers by $ \color{orangered}{ 8 } $. |
③ | Remove 1 from denominator. |