Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4+\sqrt{6}}{\sqrt{2}+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4+\sqrt{6}}{\sqrt{2}+\sqrt{3}}\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{2}-4\sqrt{3}+2\sqrt{3}-3\sqrt{2}}{2-\sqrt{6}+\sqrt{6}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{2}-2\sqrt{3}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-\sqrt{2}+2\sqrt{3}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\sqrt{2}+2\sqrt{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}- \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 4 + \sqrt{6}\right) } \cdot \left( \sqrt{2}- \sqrt{3}\right) = \color{blue}{4} \cdot \sqrt{2}+\color{blue}{4} \cdot- \sqrt{3}+\color{blue}{ \sqrt{6}} \cdot \sqrt{2}+\color{blue}{ \sqrt{6}} \cdot- \sqrt{3} = \\ = 4 \sqrt{2}- 4 \sqrt{3} + 2 \sqrt{3}- 3 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2} + \sqrt{3}\right) } \cdot \left( \sqrt{2}- \sqrt{3}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot- \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot \sqrt{2}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{3} = \\ = 2- \sqrt{6} + \sqrt{6}-3 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |
⑤ | Remove 1 from denominator. |