Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4+\sqrt{3}}{\sqrt{5}-2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4+\sqrt{3}}{\sqrt{5}-2}\frac{\sqrt{5}+2}{\sqrt{5}+2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{5}+8+\sqrt{15}+2\sqrt{3}}{5+2\sqrt{5}-2\sqrt{5}-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{5}+8+\sqrt{15}+2\sqrt{3}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}4\sqrt{5}+8+\sqrt{15}+2\sqrt{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5} + 2} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 4 + \sqrt{3}\right) } \cdot \left( \sqrt{5} + 2\right) = \color{blue}{4} \cdot \sqrt{5}+\color{blue}{4} \cdot2+\color{blue}{ \sqrt{3}} \cdot \sqrt{5}+\color{blue}{ \sqrt{3}} \cdot2 = \\ = 4 \sqrt{5} + 8 + \sqrt{15} + 2 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{5}-2\right) } \cdot \left( \sqrt{5} + 2\right) = \color{blue}{ \sqrt{5}} \cdot \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot2\color{blue}{-2} \cdot \sqrt{5}\color{blue}{-2} \cdot2 = \\ = 5 + 2 \sqrt{5}- 2 \sqrt{5}-4 $$ |
③ | Simplify numerator and denominator |
④ | Remove 1 from denominator. |