Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4+4}{4\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{8}{4\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{8}{4\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{8\sqrt{2}}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{2}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }\sqrt{2}\end{aligned} $$ | |
① | Simplify numerator and denominator |
② | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
③ | Multiply in a numerator. $$ \color{blue}{ 8 } \cdot \sqrt{2} = 8 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{2} } \cdot \sqrt{2} = 8 $$ |
④ | Divide both numerator and denominator by 8. |