Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{45}{\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}} \frac{ 45 }{\sqrt{ 5 }} \times \frac{ \color{orangered}{\sqrt{ 5 }} }{ \color{orangered}{\sqrt{ 5 }}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{45\sqrt{5}}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 45 \sqrt{ 5 } : \color{blue}{ 5 } }{ 5 : \color{blue}{ 5 } } \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{9\sqrt{5}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }9\sqrt{5}\end{aligned} $$ | |
① | Multiply both top and bottom by $ \color{orangered}{ \sqrt{ 5 }}$. |
② | In denominator we have $ \sqrt{ 5 } \cdot \sqrt{ 5 } = 5 $. |
③ | Divide both the top and bottom numbers by $ \color{blue}{ 5 }$. |