Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{\sqrt{5}+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{\sqrt{5}+3}\frac{\sqrt{5}-3}{\sqrt{5}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4\sqrt{5}-12}{5-3\sqrt{5}+3\sqrt{5}-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4\sqrt{5}-12}{-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{5}-3}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-\sqrt{5}+3}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-\sqrt{5}+3\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}-3} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 } \cdot \left( \sqrt{5}-3\right) = \color{blue}{4} \cdot \sqrt{5}+\color{blue}{4} \cdot-3 = \\ = 4 \sqrt{5}-12 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{5} + 3\right) } \cdot \left( \sqrt{5}-3\right) = \color{blue}{ \sqrt{5}} \cdot \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot-3+\color{blue}{3} \cdot \sqrt{5}+\color{blue}{3} \cdot-3 = \\ = 5- 3 \sqrt{5} + 3 \sqrt{5}-9 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 4. |
⑤ | Multiply both numerator and denominator by -1. |
⑥ | Remove 1 from denominator. |