Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{7\sqrt{6}^4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{7\cdot36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4}{252} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 4 : \color{orangered}{ 4 } }{ 252 : \color{orangered}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{1}{63}\end{aligned} $$ | |
① | $$ \sqrt{6}^4 =
\left( \sqrt{6} ^2 \right)^{ 2 } =
\lvert 6 \rvert ^{ 2 } =
36 $$ |
② | $ 7 \cdot 36 = 252 $ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 4 } $. |