Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{-5+\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{-5+\sqrt{2}}\frac{-5-\sqrt{2}}{-5-\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-20-4\sqrt{2}}{25+5\sqrt{2}-5\sqrt{2}-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-20-4\sqrt{2}}{23}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ -5- \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 4 } \cdot \left( -5- \sqrt{2}\right) = \color{blue}{4} \cdot-5+\color{blue}{4} \cdot- \sqrt{2} = \\ = -20- 4 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \left( -5 + \sqrt{2}\right) } \cdot \left( -5- \sqrt{2}\right) = \color{blue}{-5} \cdot-5\color{blue}{-5} \cdot- \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot-5+\color{blue}{ \sqrt{2}} \cdot- \sqrt{2} = \\ = 25 + 5 \sqrt{2}- 5 \sqrt{2}-2 $$ |
③ | Simplify numerator and denominator |