Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{4}{(3\sqrt{2})^2}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}} \frac{ 4 : \color{orangered}{ 2 } }{ 18 : \color{orangered}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{9}\end{aligned} $$ | |
① | $$ (3\sqrt{2})^2 =
3^{ 2 } \cdot \sqrt{2} ^ { 2 } =
3^{ 2 } \sqrt{2} ^2 =
3^{ 2 } \lvert 2 \rvert =
18 $$ |
② | Divide both the top and bottom numbers by $ \color{orangered}{ 2 } $. |