Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{7}\cdot5\sqrt{4}}{6\sqrt{7}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{7}\cdot5\sqrt{4}}{6\sqrt{7}}\frac{\sqrt{7}}{\sqrt{7}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{210}{42} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 210 : \color{orangered}{ 42 } }{ 42 : \color{orangered}{ 42 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{5}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}5\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 15 \sqrt{28} } \cdot \sqrt{7} = 210 $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{7} } \cdot \sqrt{7} = 42 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 42 } $. |
④ | Remove 1 from denominator. |