Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{4}}{3\sqrt{20}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{4}}{3\sqrt{20}}\frac{\sqrt{20}}{\sqrt{20}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{5}}{60} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{5}}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{20}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{4} } \cdot \sqrt{20} = 12 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 3 \sqrt{20} } \cdot \sqrt{20} = 60 $$ |
③ | Divide both numerator and denominator by 12. |