Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{32}}{6\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{32}}{6\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 24 : \color{orangered}{ 12 } }{ 12 : \color{orangered}{ 12 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{32} } \cdot \sqrt{2} = 24 $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{2} } \cdot \sqrt{2} = 12 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 12 } $. |
④ | Remove 1 from denominator. |