Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{3}+\sqrt{6}}{6\sqrt{3}-\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{3}+\sqrt{6}}{6\sqrt{3}-\sqrt{6}}\frac{6\sqrt{3}+\sqrt{6}}{6\sqrt{3}+\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{54+9\sqrt{2}+18\sqrt{2}+6}{108+18\sqrt{2}-18\sqrt{2}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{60+27\sqrt{2}}{102} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{20+9\sqrt{2}}{34}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 6 \sqrt{3} + \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 3 \sqrt{3} + \sqrt{6}\right) } \cdot \left( 6 \sqrt{3} + \sqrt{6}\right) = \color{blue}{ 3 \sqrt{3}} \cdot 6 \sqrt{3}+\color{blue}{ 3 \sqrt{3}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot 6 \sqrt{3}+\color{blue}{ \sqrt{6}} \cdot \sqrt{6} = \\ = 54 + 9 \sqrt{2} + 18 \sqrt{2} + 6 $$ Simplify denominator. $$ \color{blue}{ \left( 6 \sqrt{3}- \sqrt{6}\right) } \cdot \left( 6 \sqrt{3} + \sqrt{6}\right) = \color{blue}{ 6 \sqrt{3}} \cdot 6 \sqrt{3}+\color{blue}{ 6 \sqrt{3}} \cdot \sqrt{6}\color{blue}{- \sqrt{6}} \cdot 6 \sqrt{3}\color{blue}{- \sqrt{6}} \cdot \sqrt{6} = \\ = 108 + 18 \sqrt{2}- 18 \sqrt{2}-6 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 3. |