Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{27}}{2\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{27}}{2\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{27\sqrt{2}}{12} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 27 \sqrt{ 2 } : \color{blue}{ 3 } } { 12 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{9\sqrt{2}}{4}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{27} } \cdot \sqrt{6} = 27 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{6} } \cdot \sqrt{6} = 12 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |