Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{20}}{2\sqrt{4}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{20}}{2\sqrt{4}}\frac{\sqrt{4}}{\sqrt{4}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12\sqrt{5}}{8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 12 \sqrt{ 5 } : \color{blue}{ 4 } } { 8 : \color{blue}{ 4 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{5}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{4}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{20} } \cdot \sqrt{4} = 12 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{4} } \cdot \sqrt{4} = 8 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 4 } $. |