Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3\sqrt{2}}{\sqrt{6}-\sqrt{3}}\frac{\sqrt{6}+\sqrt{3}}{\sqrt{6}+\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{3}+3\sqrt{6}}{6+3\sqrt{2}-3\sqrt{2}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6\sqrt{3}+3\sqrt{6}}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2\sqrt{3}+\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}2\sqrt{3}+\sqrt{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6} + \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 \sqrt{2} } \cdot \left( \sqrt{6} + \sqrt{3}\right) = \color{blue}{ 3 \sqrt{2}} \cdot \sqrt{6}+\color{blue}{ 3 \sqrt{2}} \cdot \sqrt{3} = \\ = 6 \sqrt{3} + 3 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{6}- \sqrt{3}\right) } \cdot \left( \sqrt{6} + \sqrt{3}\right) = \color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot \sqrt{3}\color{blue}{- \sqrt{3}} \cdot \sqrt{6}\color{blue}{- \sqrt{3}} \cdot \sqrt{3} = \\ = 6 + 3 \sqrt{2}- 3 \sqrt{2}-3 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 3. |
⑤ | Remove 1 from denominator. |