Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{37}{6\sqrt{37}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{37}{6\sqrt{37}}\frac{\sqrt{37}}{\sqrt{37}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{37\sqrt{37}}{222} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{37}}{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{37}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 37 } \cdot \sqrt{37} = 37 \sqrt{37} $$ Simplify denominator. $$ \color{blue}{ 6 \sqrt{37} } \cdot \sqrt{37} = 222 $$ |
③ | Divide both numerator and denominator by 37. |