Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3-\sqrt{6}}{\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3-\sqrt{6}}{\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{6}-6}{6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{\sqrt{6}-2}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 3- \sqrt{6}\right) } \cdot \sqrt{6} = \color{blue}{3} \cdot \sqrt{6}\color{blue}{- \sqrt{6}} \cdot \sqrt{6} = \\ = 3 \sqrt{6}-6 $$ Simplify denominator. $$ \color{blue}{ \sqrt{6} } \cdot \sqrt{6} = 6 $$ |
③ | Divide both numerator and denominator by 3. |