Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3}{\sqrt{2}+\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{\sqrt{2}+\sqrt{5}}\frac{\sqrt{2}-\sqrt{5}}{\sqrt{2}-\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{3\sqrt{2}-3\sqrt{5}}{2-\sqrt{10}+\sqrt{10}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{3\sqrt{2}-3\sqrt{5}}{-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{2}-\sqrt{5}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-\sqrt{2}+\sqrt{5}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-\sqrt{2}+\sqrt{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}- \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 } \cdot \left( \sqrt{2}- \sqrt{5}\right) = \color{blue}{3} \cdot \sqrt{2}+\color{blue}{3} \cdot- \sqrt{5} = \\ = 3 \sqrt{2}- 3 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2} + \sqrt{5}\right) } \cdot \left( \sqrt{2}- \sqrt{5}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot- \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot \sqrt{2}+\color{blue}{ \sqrt{5}} \cdot- \sqrt{5} = \\ = 2- \sqrt{10} + \sqrt{10}-5 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 3. |
⑤ | Multiply both numerator and denominator by -1. |
⑥ | Remove 1 from denominator. |