Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{3}{4+4\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{3}{4+4\sqrt{3}}\frac{4-4\sqrt{3}}{4-4\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{12-12\sqrt{3}}{16-16\sqrt{3}+16\sqrt{3}-48} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{12-12\sqrt{3}}{-32} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-12+12\sqrt{3}}{32}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 4- 4 \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 3 } \cdot \left( 4- 4 \sqrt{3}\right) = \color{blue}{3} \cdot4+\color{blue}{3} \cdot- 4 \sqrt{3} = \\ = 12- 12 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 4 + 4 \sqrt{3}\right) } \cdot \left( 4- 4 \sqrt{3}\right) = \color{blue}{4} \cdot4+\color{blue}{4} \cdot- 4 \sqrt{3}+\color{blue}{ 4 \sqrt{3}} \cdot4+\color{blue}{ 4 \sqrt{3}} \cdot- 4 \sqrt{3} = \\ = 16- 16 \sqrt{3} + 16 \sqrt{3}-48 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |