Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2\sqrt{5}-8}{2\sqrt{5}+3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{5}-8}{2\sqrt{5}+3}\frac{2\sqrt{5}-3}{2\sqrt{5}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{20-6\sqrt{5}-16\sqrt{5}+24}{20-6\sqrt{5}+6\sqrt{5}-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{44-22\sqrt{5}}{11}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 \sqrt{5}-3} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 2 \sqrt{5}-8\right) } \cdot \left( 2 \sqrt{5}-3\right) = \color{blue}{ 2 \sqrt{5}} \cdot 2 \sqrt{5}+\color{blue}{ 2 \sqrt{5}} \cdot-3\color{blue}{-8} \cdot 2 \sqrt{5}\color{blue}{-8} \cdot-3 = \\ = 20- 6 \sqrt{5}- 16 \sqrt{5} + 24 $$ Simplify denominator. $$ \color{blue}{ \left( 2 \sqrt{5} + 3\right) } \cdot \left( 2 \sqrt{5}-3\right) = \color{blue}{ 2 \sqrt{5}} \cdot 2 \sqrt{5}+\color{blue}{ 2 \sqrt{5}} \cdot-3+\color{blue}{3} \cdot 2 \sqrt{5}+\color{blue}{3} \cdot-3 = \\ = 20- 6 \sqrt{5} + 6 \sqrt{5}-9 $$ |
③ | Simplify numerator and denominator |