Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}}\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{30}-10}{6-\sqrt{30}+\sqrt{30}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{30}-10}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2\sqrt{30}-10\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}- \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 \sqrt{5} } \cdot \left( \sqrt{6}- \sqrt{5}\right) = \color{blue}{ 2 \sqrt{5}} \cdot \sqrt{6}+\color{blue}{ 2 \sqrt{5}} \cdot- \sqrt{5} = \\ = 2 \sqrt{30}-10 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{6} + \sqrt{5}\right) } \cdot \left( \sqrt{6}- \sqrt{5}\right) = \color{blue}{ \sqrt{6}} \cdot \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot- \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot \sqrt{6}+\color{blue}{ \sqrt{5}} \cdot- \sqrt{5} = \\ = 6- \sqrt{30} + \sqrt{30}-5 $$ |
③ | Simplify numerator and denominator |
④ | Remove 1 from denominator. |