Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6-3\sqrt{2}}{3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2-\sqrt{2}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}2-\sqrt{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 2 \sqrt{3}- \sqrt{6}\right) } \cdot \sqrt{3} = \color{blue}{ 2 \sqrt{3}} \cdot \sqrt{3}\color{blue}{- \sqrt{6}} \cdot \sqrt{3} = \\ = 6- 3 \sqrt{2} $$ Simplify denominator. $$ \color{blue}{ \sqrt{3} } \cdot \sqrt{3} = 3 $$ |
③ | Divide both numerator and denominator by 3. |
④ | Remove 1 from denominator. |