Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2\sqrt{3}-1}{3\sqrt{3}+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{3}-1}{3\sqrt{3}+1}\frac{3\sqrt{3}-1}{3\sqrt{3}-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{18-2\sqrt{3}-3\sqrt{3}+1}{27-3\sqrt{3}+3\sqrt{3}-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{19-5\sqrt{3}}{26}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 3 \sqrt{3}-1} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 2 \sqrt{3}-1\right) } \cdot \left( 3 \sqrt{3}-1\right) = \color{blue}{ 2 \sqrt{3}} \cdot 3 \sqrt{3}+\color{blue}{ 2 \sqrt{3}} \cdot-1\color{blue}{-1} \cdot 3 \sqrt{3}\color{blue}{-1} \cdot-1 = \\ = 18- 2 \sqrt{3}- 3 \sqrt{3} + 1 $$ Simplify denominator. $$ \color{blue}{ \left( 3 \sqrt{3} + 1\right) } \cdot \left( 3 \sqrt{3}-1\right) = \color{blue}{ 3 \sqrt{3}} \cdot 3 \sqrt{3}+\color{blue}{ 3 \sqrt{3}} \cdot-1+\color{blue}{1} \cdot 3 \sqrt{3}+\color{blue}{1} \cdot-1 = \\ = 27- 3 \sqrt{3} + 3 \sqrt{3}-1 $$ |
③ | Simplify numerator and denominator |