Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4-2\sqrt{6}-\sqrt{6}+3}{2-\sqrt{6}+\sqrt{6}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{7-3\sqrt{6}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-7+3\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-7+3\sqrt{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}- \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 2 \sqrt{2}- \sqrt{3}\right) } \cdot \left( \sqrt{2}- \sqrt{3}\right) = \color{blue}{ 2 \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ 2 \sqrt{2}} \cdot- \sqrt{3}\color{blue}{- \sqrt{3}} \cdot \sqrt{2}\color{blue}{- \sqrt{3}} \cdot- \sqrt{3} = \\ = 4- 2 \sqrt{6}- \sqrt{6} + 3 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{2} + \sqrt{3}\right) } \cdot \left( \sqrt{2}- \sqrt{3}\right) = \color{blue}{ \sqrt{2}} \cdot \sqrt{2}+\color{blue}{ \sqrt{2}} \cdot- \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot \sqrt{2}+\color{blue}{ \sqrt{3}} \cdot- \sqrt{3} = \\ = 2- \sqrt{6} + \sqrt{6}-3 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |
⑤ | Remove 1 from denominator. |