Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{24\sqrt{7}}{5\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{24\sqrt{7}}{5\sqrt{6}}\frac{\sqrt{6}}{\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24\sqrt{42}}{30} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 24 \sqrt{ 42 } : \color{blue}{ 6 } } { 30 : \color{blue}{ 6 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{4\sqrt{42}}{5}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 24 \sqrt{7} } \cdot \sqrt{6} = 24 \sqrt{42} $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{6} } \cdot \sqrt{6} = 30 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 6 } $. |