Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{24}{16\sqrt{23}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{24}{16\sqrt{23}}\frac{\sqrt{23}}{\sqrt{23}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{24\sqrt{23}}{368} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 24 \sqrt{ 23 } : \color{blue}{ 8 } } { 368 : \color{blue}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{3\sqrt{23}}{46}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{23}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 24 } \cdot \sqrt{23} = 24 \sqrt{23} $$ Simplify denominator. $$ \color{blue}{ 16 \sqrt{23} } \cdot \sqrt{23} = 368 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 8 } $. |