Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{22}{2\sqrt{23}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{22}{2\sqrt{23}}\frac{\sqrt{23}}{\sqrt{23}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{22\sqrt{23}}{46} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 22 \sqrt{ 23 } : \color{blue}{ 2 } } { 46 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{11\sqrt{23}}{23}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{23}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 22 } \cdot \sqrt{23} = 22 \sqrt{23} $$ Simplify denominator. $$ \color{blue}{ 2 \sqrt{23} } \cdot \sqrt{23} = 46 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |