Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2-5\sqrt{2}}{\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2-5\sqrt{2}}{\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{3}-5\sqrt{6}}{3}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 2- 5 \sqrt{2}\right) } \cdot \sqrt{3} = \color{blue}{2} \cdot \sqrt{3}\color{blue}{- 5 \sqrt{2}} \cdot \sqrt{3} = \\ = 2 \sqrt{3}- 5 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \sqrt{3} } \cdot \sqrt{3} = 3 $$ |