Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{\sqrt{7}-3}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{7}-3}\frac{\sqrt{7}+3}{\sqrt{7}+3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{7}+6}{7+3\sqrt{7}-3\sqrt{7}-9} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{7}+6}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{\sqrt{7}+3}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{\sqrt{7}+3}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(\sqrt{7}+3) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}-\sqrt{7}-3\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{7} + 3} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{7} + 3\right) = \color{blue}{2} \cdot \sqrt{7}+\color{blue}{2} \cdot3 = \\ = 2 \sqrt{7} + 6 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{7}-3\right) } \cdot \left( \sqrt{7} + 3\right) = \color{blue}{ \sqrt{7}} \cdot \sqrt{7}+\color{blue}{ \sqrt{7}} \cdot3\color{blue}{-3} \cdot \sqrt{7}\color{blue}{-3} \cdot3 = \\ = 7 + 3 \sqrt{7}- 3 \sqrt{7}-9 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |
⑤ | Place a negative sign in front of a fraction. |
⑥ | Remove the parenthesis by changing the sign of each term within them. |