Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{\sqrt{5}+\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{5}+\sqrt{6}}\frac{\sqrt{5}-\sqrt{6}}{\sqrt{5}-\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{5}-2\sqrt{6}}{5-\sqrt{30}+\sqrt{30}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{5}-2\sqrt{6}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-2\sqrt{5}+2\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-2\sqrt{5}+2\sqrt{6}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{5}- \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{5}- \sqrt{6}\right) = \color{blue}{2} \cdot \sqrt{5}+\color{blue}{2} \cdot- \sqrt{6} = \\ = 2 \sqrt{5}- 2 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{5} + \sqrt{6}\right) } \cdot \left( \sqrt{5}- \sqrt{6}\right) = \color{blue}{ \sqrt{5}} \cdot \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot- \sqrt{6}+\color{blue}{ \sqrt{6}} \cdot \sqrt{5}+\color{blue}{ \sqrt{6}} \cdot- \sqrt{6} = \\ = 5- \sqrt{30} + \sqrt{30}-6 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |
⑤ | Remove 1 from denominator. |