Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{\sqrt{3}+6}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{\sqrt{3}+6}\frac{\sqrt{3}-6}{\sqrt{3}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2\sqrt{3}-12}{3-6\sqrt{3}+6\sqrt{3}-36} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2\sqrt{3}-12}{-33} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-2\sqrt{3}+12}{33}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}-6} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( \sqrt{3}-6\right) = \color{blue}{2} \cdot \sqrt{3}+\color{blue}{2} \cdot-6 = \\ = 2 \sqrt{3}-12 $$ Simplify denominator. $$ \color{blue}{ \left( \sqrt{3} + 6\right) } \cdot \left( \sqrt{3}-6\right) = \color{blue}{ \sqrt{3}} \cdot \sqrt{3}+\color{blue}{ \sqrt{3}} \cdot-6+\color{blue}{6} \cdot \sqrt{3}+\color{blue}{6} \cdot-6 = \\ = 3- 6 \sqrt{3} + 6 \sqrt{3}-36 $$ |
③ | Simplify numerator and denominator |
④ | Multiply both numerator and denominator by -1. |