Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{9\sqrt{45}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{9\sqrt{45}}\frac{\sqrt{45}}{\sqrt{45}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{6\sqrt{5}}{405} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 6 \sqrt{ 5 } : \color{blue}{ 3 } } { 405 : \color{blue}{ 3 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{2\sqrt{5}}{135}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{45}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \sqrt{45} = 6 \sqrt{5} $$ Simplify denominator. $$ \color{blue}{ 9 \sqrt{45} } \cdot \sqrt{45} = 405 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 3 } $. |