Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{2-\sqrt{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{2-\sqrt{6}}\frac{2+\sqrt{6}}{2+\sqrt{6}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4+2\sqrt{6}}{4+2\sqrt{6}-2\sqrt{6}-6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{4+2\sqrt{6}}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{2+\sqrt{6}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{2+\sqrt{6}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(2+\sqrt{6})\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 2 + \sqrt{6}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( 2 + \sqrt{6}\right) = \color{blue}{2} \cdot2+\color{blue}{2} \cdot \sqrt{6} = \\ = 4 + 2 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ \left( 2- \sqrt{6}\right) } \cdot \left( 2 + \sqrt{6}\right) = \color{blue}{2} \cdot2+\color{blue}{2} \cdot \sqrt{6}\color{blue}{- \sqrt{6}} \cdot2\color{blue}{- \sqrt{6}} \cdot \sqrt{6} = \\ = 4 + 2 \sqrt{6}- 2 \sqrt{6}-6 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |
⑤ | Place a negative sign in front of a fraction. |