Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{2}{1-\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{2}{1-\sqrt{3}}\frac{1+\sqrt{3}}{1+\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{2+2\sqrt{3}}{1+\sqrt{3}-\sqrt{3}-3} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{2+2\sqrt{3}}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1+\sqrt{3}}{-1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{1+\sqrt{3}}{1} \xlongequal{ } \\[1 em] & \xlongequal{ }-(1+\sqrt{3})\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 1 + \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 2 } \cdot \left( 1 + \sqrt{3}\right) = \color{blue}{2} \cdot1+\color{blue}{2} \cdot \sqrt{3} = \\ = 2 + 2 \sqrt{3} $$ Simplify denominator. $$ \color{blue}{ \left( 1- \sqrt{3}\right) } \cdot \left( 1 + \sqrt{3}\right) = \color{blue}{1} \cdot1+\color{blue}{1} \cdot \sqrt{3}\color{blue}{- \sqrt{3}} \cdot1\color{blue}{- \sqrt{3}} \cdot \sqrt{3} = \\ = 1 + \sqrt{3}- \sqrt{3}-3 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |
⑤ | Place a negative sign in front of a fraction. |