Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1+\sqrt{5}}{4\sqrt{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1+\sqrt{5}}{4\sqrt{3}}\frac{\sqrt{3}}{\sqrt{3}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\sqrt{3}+\sqrt{15}}{12}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{3}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 1 + \sqrt{5}\right) } \cdot \sqrt{3} = \color{blue}{1} \cdot \sqrt{3}+\color{blue}{ \sqrt{5}} \cdot \sqrt{3} = \\ = \sqrt{3} + \sqrt{15} $$ Simplify denominator. $$ \color{blue}{ 4 \sqrt{3} } \cdot \sqrt{3} = 12 $$ |