Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{1+\sqrt{5}}{1-\sqrt{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1+\sqrt{5}}{1-\sqrt{5}}\frac{1+\sqrt{5}}{1+\sqrt{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1+\sqrt{5}+\sqrt{5}+5}{1+\sqrt{5}-\sqrt{5}-5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6+2\sqrt{5}}{-4} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3+\sqrt{5}}{-2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-\frac{3+\sqrt{5}}{2}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ 1 + \sqrt{5}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ \left( 1 + \sqrt{5}\right) } \cdot \left( 1 + \sqrt{5}\right) = \color{blue}{1} \cdot1+\color{blue}{1} \cdot \sqrt{5}+\color{blue}{ \sqrt{5}} \cdot1+\color{blue}{ \sqrt{5}} \cdot \sqrt{5} = \\ = 1 + \sqrt{5} + \sqrt{5} + 5 $$ Simplify denominator. $$ \color{blue}{ \left( 1- \sqrt{5}\right) } \cdot \left( 1 + \sqrt{5}\right) = \color{blue}{1} \cdot1+\color{blue}{1} \cdot \sqrt{5}\color{blue}{- \sqrt{5}} \cdot1\color{blue}{- \sqrt{5}} \cdot \sqrt{5} = \\ = 1 + \sqrt{5}- \sqrt{5}-5 $$ |
③ | Simplify numerator and denominator |
④ | Divide both numerator and denominator by 2. |
⑤ | Place a negative sign in front of a fraction. |