Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{18}{5\sqrt{16}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{18}{5\sqrt{16}}\frac{\sqrt{16}}{\sqrt{16}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{72}{80} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}} \frac{ 72 : \color{orangered}{ 8 } }{ 80 : \color{orangered}{ 8 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{9}{10}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{16}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 18 } \cdot \sqrt{16} = 72 $$ Simplify denominator. $$ \color{blue}{ 5 \sqrt{16} } \cdot \sqrt{16} = 80 $$ |
③ | Divide both the top and bottom numbers by $ \color{orangered}{ 8 } $. |