Tap the blue circles to see an explanation.
$$ \begin{aligned}\frac{16\sqrt{3}}{9\sqrt{2}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{16\sqrt{3}}{9\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{16\sqrt{6}}{18} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{ 16 \sqrt{ 6 } : \color{blue}{ 2 } } { 18 : \color{blue}{ 2 }} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{8\sqrt{6}}{9}\end{aligned} $$ | |
① | Multiply the numerator and denominator by the conjugate of the denominator . $$\color{blue}{ \sqrt{2}} $$. |
② | Multiply in a numerator. $$ \color{blue}{ 16 \sqrt{3} } \cdot \sqrt{2} = 16 \sqrt{6} $$ Simplify denominator. $$ \color{blue}{ 9 \sqrt{2} } \cdot \sqrt{2} = 18 $$ |
③ | Divide numerator and denominator by $ \color{blue}{ 2 } $. |